
Kong, S. C., Sheldon, J., & Li, K. Y.. (Eds.). (2017). Conference Proceedings of International Conference on

Computational Thinking Education 2017. Hong Kong: The Education University of Hong Kong

160

App Inventor VR Editor for Computational Thinking

Jane IM 1, Paul MEDLOCK-WALTON2*, Mike TISSENBAUM2*

1 Korea University
2 Massachusetts Institute of Technology

jane605@korea.ac.kr, paulmw@mit.edu, mtissen@mit.edu

ABSTRACT

This paper introduces the concept of a virtual reality

(VR) programming environment that allows youth to

both develop immersive VR experiences while

enhancing computational thinking (CT). Specifically, we

extended a blocks-based programming platform, MIT

App Inventor, to allow youth to make VR Android apps

(AI/VR). We compare AI/VR's support for CT to other

existing VR editors using the CT concepts established by

Brennan and Resnick (2012). Comparisons showed that

AI/VR’s support for all CT concepts and its ease of use

for kids, makes it more preferable for teaching CT

compared to other editors.

KEYWORDS
computational thinking, virtual reality, constructionism,

immersive interface, MIT App Inventor

1. INTRODUCTION
In recent years, many educators have argued

computational thinking (CT) (Wing, 2006) is an

indispensable skill for everyone. In order to support

widespread uptake of computational thinking, blocks-

based approaches to programming have been developed,

in which users program by snapping blocks of code. For

example, Scratch allows students to build 2D multimedia

(Brennan & Resnick, 2012). Alice helps students learn

programming by building 3D media (Dann, Cooper, &

Pausch, 2006).

Compared to Scratch, Alice provided a more immersive

experience. Studies using Alice showed it is effective for

learning programming, in part to its immersive nature

(Sykes, 2007), indicating the potential for immersive

experiences to enhance students’ computational

thinking. However, there has been limited research on

how VR, an immersive environment, can support CT

learning. Given the nascent field of VR, in order to

understand the role of it in developing CT, there is a need

to examine current VR editors. If these do not support the

kinds of learning we wish to support, then it is critical to

develop appropriate tools. This work was framed around

two needs: 1) understand the state of current VR editors

and examine their suitability for supporting developing

computational thinking; and 2) develop a tool that

supports the learning needed, if current platforms were

found to be lacking.

Below, we examine current VR editors, discuss how they

support CT and their suitability for young learners. We

propose AI/VR that responds to their shortcomings.

2. BACKGROUND

2.1. Constructionism

Constructionism is the process of building understanding

through the active use of tools to develop tangible

artifacts (Kafai & Resnick, 2011). Building on

constructionism, is the concept of “learning as

designers”, which has shown to increase higher-order

thought process development and motivation (Cooper,

Dann, & Pausch 2003; Fortus, Dershimer, Krajcik, Marx,

& Mamlok-Naaman, 2004). Especially, programming

interactive media has been shown to support CT

(Brennan & Resnick, 2012). The development of

interactive and immersive media, with platforms such as

Alice, also embody constructionist characteristics, as

they allow learners to design interactive media freely in

the same context (Sykes, 2007).

2.2. Immersive Interface for Learning

Immersion is the subjective impression that one is

participating in a comprehensive, realistic experience

(Stanney, 2002; Lessiter, Freeman, Keogh, & Davidoff,

2001). Studies have shown that immersion in a digital

environment can enhance education in at least three

ways: allowing multiple perspectives, situating the

learning, and transfer to other contexts (Dede, 2009).

Below we describe two immersive learning

environments.

2.3. Alice

Alice is a 3D graphics programming environment that

allows users to create interactive 3D animations and

learn programming in an object-oriented approach (Dann

et al., 2006). Research on use of Alice to teach an entry

level undergraduate computer science course showed

that posttest performance among students who used

Alice was significantly higher than comparison groups.

Qualitative results showed that students using Alice

enjoyed the process and spent more time engaged in the

course (Sykes, 2007). There were diverse reasons for this

engagement, including

the active graphical interface. While Alice is not

completely immersive, it has a higher degree of

immersion compared to text-based languages. The

results suggest the potential for enhancing students’

computational thinking skills within a more immersive

environment.

2.4. Immersive Interface for Learning

Virtual Environment Interactions (VEnvI) is a platform

that uses a database of dance sequences, VR, and a drag-

and-drop interface to teach programming concepts

161

(Parmar et al., 2016). Although this study is limited

because students did little programming, and were

introduced to programming concepts in sessions, results

showed that students found the immersion of VEnvI

desirable and became more positive towards computer

science.

3. PREVIOUS EDITORS

3.1. Introduction of VR Editors

In order to understand how current platforms support CT,

we examined nine VR code editors: 360°& VR Editor

(“360°& VR Editor”, n.d), HoloBuilder (“HoloBuilder”,

n.d.), Smart2VR (“Smart2VR”, n.d.), CoSpaces

(“CoSpaces”, n.d.), Vizor (“Vizor”, n.d.), Unity (“VR

Overview”, n.d.), Unreal Engine VR Editor (“Unreal

Engine VR Editor”, n.d.), Arma 3’s virtual reality editor

(Arma 3 has a VR editor for creating games) (Zemánek,

2014), and Simmetri (“Simmetri”, n.d.).

3.2. Categorization and Analysis

We categorized the editors using Brennan and Resnick’s

computational concepts, which are sequences, loops,

parallelism, events, conditionals, operators, and data

(Brennan & Resnick, 2012). The editors are also

categorized based on their affordances into three groups,

which are photo/video focused editors, visual

programming editors, and text based editors (Table 1).

3.2.1. Photo or video focused editors

Photo or video focused editors are ones that: 1) focus on

making rich scenes using photos and videos; and 2) only

support acquiring the computational thinking concept

‘events’. The focus on scene creation is the goal of these

editors, which explains why they have limited utility for

CT. Users can place events inside scenes using drag-and-

drop (e.g., adding a button that is clickable). However,

such editors lack the means to use sequences, loops,

parallelism, events, operators, and data. 360°& VR

Editor, HoloBuilder, and Smart2VR fit in this category.

3.2.2. Visual programming editors

Visual programming editors support most, if not all, the

CT concepts through visual programming. Vizor and

CoSpaces fall in this category, with CoSpaces also

supporting text based programing.

In Vizor, students can apply all computational thinking

concepts through using a ‘patch’, which can be

connected to other patches (Figure 1). Users can

combine patches like state/structure patches to

understand sequence. There are prebuilt patches for

loops, conditionals, operators, variables, and data. Users

can learn parallelism, for example, by using two mouse

press patches. However, there are limitations including

the limited animation patches, which can make

animating objects difficult. Additionally, unlike MIT

App Inventor where blocks run from top to bottom, the

order of patches do not indicate sequence in Vizor,

requiring users to link extra patches.

In CoSpaces, users can use blocks to apply all seven CT

concepts. Users can connect blocks from top to bottom

to understand sequence, and use loop blocks to

understand loops. The execute in parallel and the on

activate of blocks enable parallelism and events in users'

projects, respectively. There are prebuilt blocks for

conditionals, operators, variables and data. However,

CoSpaces lacks blocks for dynamically creating objects,

and has limited types of events compared to Vizor and

AI/VR. These can limit the range of computational

practices (which focus on “how”, instead of “what” users

learn) (Brennan & Resnick, 2012).

Table 1. Categorization of VR Editors with colored boxes representing an attribute(column) that an editor(row) has.

Numbers 1,2,3,4,5,6,7 of CT concept each refer to sequences, loops, parallelism, events, conditionals, operators, and

data.
 CT Concepts

Platform Editor Type 1 2 3 4 5 6 7

Does not require

programming

background

Intended

audience

360°& VR Editor

Photo/Video

 Novices

HoloBuilder Novices, especially construction company

Smart2VR Novices

Vizor Visual Novices

CoSpaces Visual/Text based Novices

Unity

Text based

 Professional, Experienced gamers

Unreal Engine VR

Editor

 Professional, Experienced gamers

Arma 3’s editor Professional, Experienced gamers

Simmetri Artists

AI/VR Visual Novices

162

Figure 1. Usage of patches in Vizor.

3.3. Text-based editors

Text based editors are editors that require at least partial

text based programming to exhibit the seven CT

concepts. Unity, Unreal Engine VR Editor, Arma 3’s

virtual reality editor, and Simmetri fit in this category,

with differing audiences (Table 1). Since these editors

allow users to build complicated VR environments

technically, they support all CT concepts, and users can

employ complex CT with them. However, these text-

based editors require a steep learning curve and are not

suitable for beginners.

Building off of the various shortcomings of the tools

described above, we identified a gap in the VR authoring

landscape for a tool that allows novices to develop VR

applications while developing CT concept

understandings. Below we describe the tool and its use.

4. APP INVENTOR VR EDITOR
4.1. Blocks in AI/VR

There are four kinds of blocks in AI/VR: 1) event, 2)

method, 3) property setter and getter, and 4) object

creation blocks. Event includes checkButton, which

checks if the user clicks the Cardboard button. Method

blocks trigger interactions with objects and the player,

including moveUser, which changes the location of the

player. Property setters and getters change object’s

attributes, such as size. Object creation blocks, such as

createCube, allow the user to dynamically add objects.

4.2. Sample AI/VR program

To demonstrate how the editor supports CT, we included

a sample AI/VR program (Figure 2 & Figure 3). If the

user gazes at one of the four cubes (that are made by

shaking the phone), she will earn points (shown in a

label). The cube also moves to a random position and

changes color.

This example shows how all seven computational

concepts are supported in AI/VR. First, users can

understand sequences by checking that blocks are

executed in order when the user gazes at a cube. The cube

changing color, and the score increasing and updating

shows sequentially (① of Figure 3). Loops are used to

iterate over cubes in ②. Events are used through blocks

like checkGazeShort (the block that returns 1 if the user

gazed at the object - ③). For parallelism, two "if" blocks

are used to check whether a cube was gazed at and the

color and position of the cube are changed concurrently

(④). For conditionals, the user can connect event blocks

and attribute or animation related blocks with an "if"

block (⑤). For operators, users can practice addition by

adding 1 to the current score when a cube is gazed at (⑥-

1) and checking that the increased score is updated in the

scene (⑥-2). Lastly, users can understand data by

keeping track of cubes using a list block (⑦).

Figure 2. Scene of demo

Figure 3. Code for a sample VR program in AI/VR.

4.3. Categorization and Analysis

AI/VR is in the category of visual programming editors

and supports all CT concepts. AI/VR also targets ease of

use by kids, employing the same drag-and-drop interface

as the original MIT App Inventor (Wolber, Abelson,

Spertus, & Looney, 2011). Considering these aspects,

AI/VR balances usability for kids and features for

supporting CT, overcoming the limitations of other

editors. It also has animation blocks such as moveObject,

overcoming the limitation of Vizor. Using the top down

approach, sequences are also easier in AI/VR. Compared

to CoSpaces, AI/VR supports creating new objects with

blocks like createCube, and allows diverse triggering

events with blocks like checkButton, which triggers an

event when a user presses the Cardboard headset button.

However, AI/VR lacks a diversity of objects and media

related blocks like video. In context of CT, this could be

163

a limitation because it could reduce the diversity of

computational practices.

5. CONCLUSION
Considering the role constructionism plays in

computational thinking and the possibility of immersive

virtual reality to support this learning, we introduce

AI/VR - a blocks-based tool to support kids to more

easily create virtual reality apps. We have shown

AI/VR’s fit as a visual programming editor that supports

all seven of Brennan and Resnik's CT concepts, while

also being usable by young kids. Although AI/VR has

limited diversity in objects and media related blocks, it

overcomes the limitations of Vizor, such as animating

objects and sequence, and those of CoSpaces such as the

lack of blocks for dynamically creating objects and the

limited types of triggers for events.

6. ACKNOWLEDGEMENT
We would like to thank Hal Abelson, Professor of EECS

at MIT, whose insight was great help to this research.

7. REFERENCES
Brennan, K., & Resnick, M. (2012). New frameworks

for studying and assessing the development of

computational thinking. Proceedings of the 2012

Annual Meeting of the American Educational

Research Association (AERA 2012).

Cooper, S., Dann, W., & Pausch, R. (2003). Teaching

objects-first in introductory computer

science. Proceedings of the 34th SIGCSE technical

symposium on Computer science education - SIGCSE

'03.

CoSpaces. (n.d.). Retrieved from

https://cospaces.io/create.html

Dann, W., Cooper, S., & Pausch, R. (2006). Learning to

program with Alice. Upper Saddle River, NJ: Pearson

Prentice Hall.

Dede, C. (2009). Immersive interfaces for engagement

and learning. Science, 323(5910), 66-69.

Fortus, D., Dershimer, R. C., Krajcik, J., Marx, R. W.,

& Mamlok-Naaman, R. (2004). Design-based science

and student learning. Journal of Research in Science

Teaching, 41(10), 1081-1110.

HoloBuilder (n.d.). Retrieved from

http://landing.holobuilder.com/construction

Kafai, Y. B., & Resnick, M. (2011). Constructionism in

practice: Designing, thinking, and learning in a

digital world. New York, NY: Routledge.

Lessiter, J., Freeman, J., Keogh, E., & Davidoff, J.

(2001). A cross-media presence questionnaire: The

ITC-Sense of Presence Inventory. Presence:

Teleoperators and Virtual Environments, 10(3), 282-

297.

Parmar, D., Isaac, J., Babu, S. V., D'souza, N., Leonard,

A. E., Jorg, S., . . . Daily, S. B. (2016). Programming

moves: Design and evaluation of applying embodied

interaction in virtual environments to enhance

computational thinking in middle school students.

2016 IEEE Virtual Reality (VR), 131-140.

Simmetri. (n.d.). Retrieved from http://simmetri.com/

Smart2VR. (n.d.). Retrieved from

https://www.smart2vr.com/#how-it-works

Stanney, K. M. (2002). Handbook of virtual

environments: design, implementation, and

applications. Mahwah, NJ: Lawrence Erlbaum

Associates.

Sykes, E. (2007). Determining the effectiveness of the

3D Alice programming environment at the computer

science I level. Journal of Educational Computing

Research, 36(2), 223-244.

360°& VR Editor. (n.d.). Retrieved from

http://demo.thinglink.com/vr-editor

Unreal Engine VR Editor. (n.d.). Retrieved from

https://docs.unrealengine.com/latest/INT/Engine/Edit

or/VR/

Vizor. (n.d.). Retrieved from http://vizor.io/about

VR Overview. (n.d.). Retrieved from

https://unity3d.com/kr/learn/tutorials/topics/virtual-

reality/vr-overview

Wang, T., Mei, W., Lin, S., Chiu, S., & Lin, J. M.

(2009). Teaching programming concepts to high

school students with Alice. 2009 39th IEEE Frontiers

in Education Conference, 1-6.

Wing, J. M. (2006). Computational thinking.

Communications of the ACM, 49(3), 33-35.

Wolber, D., Abelson, H., Spertus, E., & Looney, L.

(2011). App Inventor – Create Your Own Android

Apps. Sebastopol, CA: O'Reilly.

Zemánek, J. (2014, July 15). Arma3: Virtual Reality

Custom Courses. Retrieved January 10, 2017, from

https://community.bistudio.com/wiki/Arma3:_Virtual

_Reality_Custom_Courses

https://cospaces.io/create.html
http://landing.holobuilder.com/construction
http://simmetri.com/
https://www.smart2vr.com/#how-it-works
http://demo.thinglink.com/vr-editor
https://docs.unrealengine.com/latest/INT/Engine/Editor/VR/
https://docs.unrealengine.com/latest/INT/Engine/Editor/VR/
https://unity3d.com/kr/learn/tutorials/topics/virtual-reality/vr-overview
https://unity3d.com/kr/learn/tutorials/topics/virtual-reality/vr-overview

